
Exact results for surface deposition with precursor layer diffusion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 3449

(http://iopscience.iop.org/0305-4470/30/10/021)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 3449–3461. Printed in the UK PII: S0305-4470(97)79747-6

Exact results for surface deposition with precursor layer
diffusion

G J Rodgers†§ and J A NFilipe‡‖
† Department of Physics, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
‡ Biomathematics and Statistics Scotland, The University of Edinburgh, JCMB, The King’s
Buildings, Edinburgh EH9 3JZ, UK

Received 20 November 1996, in final form 26 February 1997

Abstract. An accelerated random sequential adsorption process is studied as a model of
chemisorption on a line with precursor layer diffusion. In this process if the position first
selected for deposition is occupied then the particle diffuses and is absorbed on the first vacant
position it visits. Fork-mer deposition exact results are obtained for the gap distribution function.
Physically measurable quantities such as the average island size and the probabilities of island
nucleation, growth and coagulation are calculated as a function of coverage and the saturation
coverage is calculated as a function ofk. The continuum version of this model is also considered
and potential applications of the models are discussed.

1. Introduction

Random sequential adsorption(RSA) is a process in which particles are adsorbed
sequentially and without overlap onto randomly chosen positions on a surface [1–4], once
deposited a particle cannot diffuse or desorb from the surface, so adsorption is irreversible.
This model is adequate for describing deposition processes in which particles, in a gas
or solution, adhere strongly to a surface but interact weakly with each other, apart from
being impenetrable. In particular, desorption should be negligible and any diffusion on the
substrate should be very slow on the time scale of the observations.

Despite its simplicity, the model has been used to successfully describe the adsorption
of colloid particles [5] and gas molecules [6] onto solid surfaces. A virtue of this model
is that it is exactly solvable in one dimension in both its lattice and continuum versions
[1–4]. On a lattice,k-mers can be deposited in discrete positions along a line [1–3]. In
the continuum model [4], known as therandom car parking problem, cars of length 1 are
deposited on an infinite continuous line. The jamming limit, when all the empty spaces
are of lengths less thank for the lattice, or less than 1 for the continuum, is reached in
an infinite time. To make the model more realistic and to widen its range of applications,
various extensions and generalizations of RSA have been proposed and analysed. The
inclusion of diffusional relaxation on the substrate [7–9], leading to equilibration, and the
possibilities that the particles are reflected back to the fluid or desorbed [9–11] have been
examined. The RSA of mixtures of objects of different shapes [12] and of long segments
[13] in bi-dimensional lattices has also been considered. Many other studies are detailed in
a recent review [14].
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Experimental measurements of adsorption kinetics in many gas–metal surfaces [15, 16]
have shown that the sticking (or adsorption) probability is largely insensitive to the increase
in thecoverage fractionover a wide range of coverages. This has provided evidence for the
existence of more complicated deposition mechanisms. As gas particles approach the surface
and lose just enough of their kinetic energy they can become trapped (physisorbed) in a
mobile, temporary state. The particles can diffuse on the surface in thisprecursor stateuntil
they become adsorbed (chemisorbed) at a site at a later time. The mechanism of precursor-
mediated chemisorption, first postulated by Taylor and Langmuir [17], was formulated as
a statistical model in the seminal work of Kisliuk [18]. This was later adapted by King
and co-workers [6, 11, 16, 19] to include other physical features. Variations on the Kisliuk
model have also been studied by other authors, both numerically and analytically [10, 20–
23]. Most analytical treatments, however, are essentially mean-field-like, as they largely
ignore the spatial correlations generated by the precursor-mediated deposition process. The
importance of the correlations between adatoms had already been recognized by Kisliuk
[18], but ignored for mathematical simplicity.

In order to make analytical progress and to gain quantitative insight into the changes
induced by precursors in the kinetics of adsorption, a simplified, but non-trivial version of the
Kisliuk model was introduced by the present authors in [24], and studied in one dimension.
We examined the case where physisorption is only possible on the top of chemisorbed
particles, (inextrinsic precursor states), and where there is no desorption back to the gas
phase. In this model, monomer deposition is attempted sequentially at random sites on a
lattice. If the site is occupied, the particle diffuses on top of the occupied region until it
reaches a vacant position where it adsorbs irreversibly. It was assumed that the diffusion
time scale is small enough compared with the time scale of the deposition trials (i.e. that
the process is adsorption limited). This is a plausible assumption if the flux of gas particles
onto the surface is low, except in the limit when the surface is almost full (see [24] for a
more detailed discussion). Hence, particles in the precursor layer diffuse, with negligible
interaction, with one another. Under these conditions, the one-dimensional random walk
performed in the precursor state can be effectively modelled by a random choice between
adsorption at the left or right edges of the island on which the particle has landed. Note
that allowing physisorption on top of the empty sites (intrinsic precursor states) implies the
existence of interactions between precursor and chemisorbed particles [10], which would
complicate the analysis considerably.

As each deposition attempt results in a direct or diffusion-mediated occupation of an
empty site thesurface coverage, θ , grows linearly with time and thesticking probability is
1. This represents the limiting behaviour observed in the most common gas–solid systems
(see, e.g. [6, p 56]). As a result, the system saturates, with no further deposition possible,
after a finite time proportional to the lattice size; full coverage,θ = 1, is reached in the
case of monomer deposition. This situation contrasts with conventional RSA, where the
time dependence of the coverage is nonlinear and the saturation time is infinite [14]. Since
the time dependent behaviour of the coverage is different in the two models, a comparison
of physical quantities, such as the average island size, must be carried out as a function
of coverage. Another consequence of the (extrinsic) precursor diffusion, which at later
times is the dominant mechanism of deposition, is that the edges of islands are preferential
sites for chemisorption, especially those of the larger islands. Long-range correlations in
the spatial distribution of the adsorbed particles develop, since, as time progresses the
precursor particles migrate for larger and larger distances with ever increasing probability.
This structuring makes the calculation of the probability distribution of the island sizes,
even for monomer deposition in one dimension, highly non-trivial. In [24], approximate
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solutions (based on truncation schemes analogous to those employed in [25]) were found to
exact equations for the evolution of the island size. These were compared with numerical
simulations.

In this paper, further progress is reported. We calculate exactly the probability
distribution for the size of inter-island gaps. From this, exact expressions are obtained for
several physical properties as a function of time. These include the probabilities per unit
time of nucleation, growth and coagulation, the average island size, and the island number
density, which were evaluated approximately in [24]. In addition, ak-mer generalization
of the model is introduced, and the same quantities are calculated exactly using a similar
method. To our knowledge, this is the first study providing a quantitative insight into the
dependence of adsorption processes with precursors on the size of the deposited particles.
A continuum version of the model is also introduced and solved. A comparison between
this model and the standard RSA is made both on a lattice and on the continuum. Following
[24], Ben-Naim and Krapivsky [26] recently analysed a one-dimensional generalization of a
nucleation-and-growth process, known as the Kolmogorov–Avrami–Johnson–Mehl model,
in which the rate of island growth is proportional to the island size rather than being
constant. The model is similar to the continuous version of the model studied here, the
essential difference being that nucleation occurs in the form of infinitesimal seeds. The
surface coverage, in particular, was also found to grow linearly with time. In [26] the model
introduced by us in [24] was called anaccelerated RSA(ARSA) process, a terminology we
have adopted here.

One of our motivations for studying the ARSA model was to provide an insight into the
role of precursors in chemisorption. In addition, it was suggested by Cassuto and King [19]
that a kinetic deposition model without intrinsic precursors and with negligible desorption
could explain the experimental data from gas–solid systems such as hydrogen on tungsten.
Another, more general motive concerns one of the unrealistic assumptions of the RSA
model, that once a deposition trial fails due to overlap, the particle is rejected and the site
of the next event is totally uncorrelated to the previous. In real processes, however, where
transport to the surface is diffusive, such an event would probably be followed by a nearby
adsorption attempt [27]. The ARSA model goes some way towards capturing this feature,
especially at lower coverages when the precursor-diffusion length is relatively small. In this
respect, the ARSA model is related to previous models in one [28] and two [29] dimensions,
aimed at incorporating the effect of local rearrangement due to gravity (rather than due to
bulk diffusion). In [29], when a disk contacts a previously adsorbed particle it rolls over
that particle along the path of steepest descent; if in the next stable position the particle
touches the substrate it sticks, otherwise it is rejected. The configurations obtained in this
way are slightly more closely packed than their RSA counterparts.

The essential difference between ARSA and standard nucleation-and-growth models is
that the rate of growth of a domain, of a new phase or species, is proportional to its ‘area’, i.e.
the rate of occupation of a neighbouring site is proportional to the domain’s linear size. Here,
a connection can be made between the ARSA model and, for example, thecontact process
[30] with a nucleation source [31], where the growth rate of a domain is proportional to its
‘perimeter’, i.e. the rate of occupation of a neighbouring site is constant. The occurrence
of such exponential growth implies the existence of some long-range transport mechanism
whereby the boundary feels effects caused by all elements in the domain. This special form
of nucleation-and-growth, or seeding and spreading phenomena is not restricted to molecular
and macromolecular surface-adsorption processes. There are other potential applications of
the ARSA model, and extensions thereof, in physical and biological systems. One area
of application is epidemiology. The model could describe the spatio-temporal spread of
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infectious diseases in cases where, for example, the rate at which a susceptible becomes
infected is determined by the infection challenge from successive contacts with individuals
in a neighbouring infected cluster [32]. Another relevant area is population dynamics,
and ecology in particular. Here, local aggregates, or communities, would be seeded and
expand due to the internal pressure and dynamics resulting from the creation of offspring
and competition for space and resources. It is also conceivable that ARSA could describe
the slow deposition of liquid droplets on a plane surface, i.e. the formation and spreading
of ‘rain’ puddles, especially on nearly one-dimensional surfaces. The motion of a puddle
boundary would result from the imbalance between surface tension and outward pressure
waves generated by deposition droplets.

This paper is organized as follows. In section 2, the monomer deposition model is
considered and then in section 3 the more general problem ofk-mer deposition. Quantities
that characterize the island distribution and that can be obtained from the gap size probability
distribution, such as the average island size and number, are discussed in section 4. In
section 5 a continuum version of the ARSA model is introduced and then finally in section 6
the paper is briefly summarized and some possible extensions to this work are suggested.

2. Monomer deposition

Every chain of empty sites, or gap, is bordered by two chains of occupied sites or islands
and vice versa. If a particle lands on one of these islands then it will destroy the gap to the
left or the right of the island by diffusing on top of the island before moving into one of the
empty sites adjacent to the island. To make progress analytically we must adopt the working
hypothesis that the size of the island is uncorrelated with the size of the neighbouring gap.
A gap adjacent to a large island is more likely to be destroyed by diffusion than a gap
adjacent to a small island. However, the probability that a gap is adjacent to a large island
is independent of the size of the gap. This is because the diffusion mechanism only effects
the probability of occupation of the sites at the end of the gap, independent of the number
of sites in the gap. This hypothesis is confirmed by numerical simulations of the system;
the probability distribution of the size of islands next to a 1-gap is the same as that for a
2-gap, 3-gap etc.

Thus, all gaps are destroyed by the diffusion mechanism with a rate proportional to the
average island size.

Consequently, the density of gaps of lengthr, cr(t) obeys the differential equation

dcr(t)

dt
= −rcr(t)+ 2

∞∑
s=0

cr+s+1(t)+ q(t)(cr+1(t)− cr(t)) (1)

where time, t , stands for the number of deposition events divided by the system size.
Similarly, by ‘density’ we mean the number of occurrences (in this case of finding a gap
of size r) divided by the system size. The first term on the right-hand side represents the
destruction of a gap of lengthr by direct deposition. The second term is the creation of a
gap of sizer by direct deposition in a gap of lengthr+ s+1. The last term corresponds to
the creation and destruction of gaps of lengthr by the diffusion of particles on previously
occupied sites. The quantityq(t) is the average island size at timet and is given by

q(t) = θ(t)∑∞
r=1 cr(t)

(2)

where the term in the denominator is equal to the total number density of islands and the
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coverage is given by

θ(t) = 1−
∞∑
r=1

rcr(t). (3)

If we setq = 0 the equation describes the RSA of monomers on a chain. Even though
it is nonlinear, equation (1) can be solved, self-consistently, using the method developed in
[33]. We anticipate a solution with the form

cr(t) = A(t) exp{−rt} (4)

with initial conditions, as in [33],cr(0) = 0 and

lim
t→0

∞∑
r=1

rcr(t) = 1. (5)

This latter condition implies that

lim
t→0

A(t)

t2
= 1. (6)

Inserting (4) into (2) and (3) gives

q(t) = 1− e−t

A(t)e−t
− 1

1− e−t
(7)

and (4) into (1) gives

dA(t)

dt
= A(t)q(t)(e−t − 1)+ 2A(t)

e−t

1− e−t
. (8)

Eliminating q(t) between these two equations gives a differential equation forA(t) which
can be solved, subject to the initial condition (6), to reveal

cr(t) = (1− t)et (1− e−t )2e−rt , (9)

θ(t) = t , as expected, and the island density

q(t) = t

1− t
1

1− e−t
. (10)

To compare the results of this process with those for the RSA of monomers, we consider the
probability for island nucleation, coagulation and growth per successful deposition event.
We denote these quantities byPn, Pc and Pg(= 1 − Pn − Pc) respectively. For RSA
Pn = (1− θ)2 andPc = θ2 whereas for this model

Pn =
∞∑
r=2

(r − 2)cr(t) = (1− θ)e−2θ (11)

and

Pc = c1(t)+ θ(t) c1(t)∑∞
r=1 cr(t)

= (1− e−θ )[1− (1− θ)e−θ ]. (12)

Figure 1 contains a graph ofPn, Pc and Pg againstθ for the two models. For ARSA,
Pg → e−1 > 0 asθ → 1, indicating that there are a finite number of gaps with two empty
sites at large coverage. The results presented in figure 1 are indistinguishable from the
numerical simulations of the ARSA model in [24]. A similar agreement is found for the
number density of islands, shown in figure 2.
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Figure 1. Probabilities of island nucleation, coagulation and growth per successful deposition
event as a function of coverage.

3. k-mer deposition

For the deposition ofk-mers the analogue of equation (1) is

dcr(t)

dt
= −[r − (k − 1)]cr(t)+ 2

∞∑
s=0

cr+s+k(t)+ q(t)(cr+k(t)− cr(t)) (13)

for r > k and

dcr(t)

dt
= 2

∞∑
s=0

cr+s+k(t)+ q(t)cr+k(t) (14)

for r < k. The initial conditions are the same as before (equation (5)). Nowq(t) is

q(t) = 1−∑∞r=k[r − (k − 1)]cr(t)∑∞
r=k cr (t)

(15)

and is equal to the average length of the chains of sites in which it is not possible to deposit
a k-mer. This is the average length of chain in which a physisorbed particle will diffuse
before chemisorption takes place. The denominator contains the number of gaps of lengths
greater thank, which is equal to the number of chains in which ak-mer cannot be deposited.
The numerator is one minus the total number density of positions in which it is possible
to place ak-mer, which is equal to the total number density of positions in which ak-mer
cannot be deposited.

In analogue with the monomer model, equations (13) and (14) are solved by

cr(t) = A(t) exp{−(r − (k − 1))t} (16)
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Figure 2. The number density of islands as a function of coverage for the RSA and ARSA
models with monomers and dimers. The monomer curves are continuous asθ → 1.

for r > k. Now we have

dA(t)

dt
= A(t)q(t)(e−kt − 1)+ 2A(t)

e−kt

1− e−t
(17)

and equation (7) forq(t). We can eliminateq(t) between these equations and solveA(t)
to reveal

cr(t) = (1− e−t )2
[

2− ∫ t0 duFk(u)

Fk(t)
− 1

]
e−(r−k)t (18)

for r > k where

Fk(t) = exp

{∫ t

0

1− e−ku

1− e−u
du− t

}
= exp

{ k−1∑
r=1

1− e−rt

r

}
(19)

and

cr(t) =
∫ t

0
(1− e−u)e−ru

[
2− ∫ u0 dv Fk(v)

Fk(u)

]
du (20)

for r < k. It is relatively straightforward to show that this solution gives

θ(t) = kt
as we would expect. The critical time at which the line is saturated is the time at which
the only gaps are of sizek − 1 or less. This occurs whencr(tc) = 0 for all r > k. This
condition can be inserted into (16) to give an equivalent condition,A(tc) = 0, or

Fk(tc)+
∫ tc

0
duFk(u) = 2 (21)
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Table 1. The saturation coverage for the ARSA process as a function ofk.

k θ(tc)

1 1
2 0.9115. . .
3 0.8865. . .
4 0.8747. . .
5 0.8678. . .
6 0.8633. . .
7 0.8601. . .
8 0.8578. . .
9 0.8560. . .

10 0.8545. . .
100 0.8430. . .

1000 0.8419. . .
∞ 0.8417. . .

and hence the saturation coverageθ(tc) = ktc. This equation has been solved by using
Newton’s method to give the saturation coverage as a function ofk in table 1. These values
have also been confirmed by direct numerical simulation of the system.

A comparison can be made between the saturation coverage for this model and that for
the standard RSA model [34]; the ARSA process leads to a higher coverage fork > 1 as it
has a more efficient packing mechanism. In the limitk→∞, with suitable rescaling, one
recovers results for the continuum version of this problem, which is introduced in section 5.
As in the RSA model, the approach of the saturation coverage to this limit goes like 1/k

[34].

4. Results

There are a number of statistical quantities of physical interest that can be derived from
the gap size probability distributions in the previous two sections. These include the total
number of gaps, the number of gaps of lengths greater than or equal tok, and the number
of gaps of lengths less thank. One can also study the total length covered by gaps of these
three types and, consequently, the average size of each of these gaps. All these quantities
are easily obtained from the gap size probability distribution.

Also of interest experimentally is the average island size〈L〉 as a function of coverage,
which is obtained via the expression

〈L〉 = θ∑∞
r=1 cr(t)

= θ
[ ∫ θ/k

0
du e−u

[
2− ∫ u0 dvFk(v)

Fk(u)

]
− θ/k

]−1

. (22)

For monomer RSA〈L〉 = 1/(1− θ) whereas for ARSA, we have (with the sameq(t) as in
(10))

〈L〉 = θ

(1− θ)(1− e−θ )
. (23)

For dimer RSA

〈L〉 = 2θ

(1− θ) log
(

1
1−θ

) (24)
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Table 2. The saturation values of〈L〉/k for the ARSA process as a function ofk.

k 〈L(tc)〉/k
1 ∞
2 5.151
3 3.792
4 3.340

10 2.790
∞ 2.436

whenθ < θ(∞) = 1−e−2. Whenθ = θ(∞), 〈L〉 = θ(∞)/(1−θ(∞)) = e2−1= 6.389. . .,
indicating that in the saturated state a typical island contains about three dimers. For the
ARSA of dimers,

〈L〉 = θ

1− θ − exp{e−θ/2}
[

e−1− ∫ 1
e−θ/2

1+v
v

e−v dv

] (25)

when θ < θ(tc) = 0.9114. . . and 〈L〉 = θ(tc)/(1− θ(tc)) = 10.30. . . for θ = θ(tc). This
indicates that in the saturated state a typical island contains about five dimers. Table 2
shows the saturation values of〈L〉/k for several values ofk.

Notice that asθ → 0, 〈L〉 → 1 for the monomer deposition models and two for the
dimers. These are special cases of a general result fork-mer deposition,〈L〉 → k asθ → 0,
which follows from (22). This indicates that for short times the few particles that have been
deposited are in isolated islands.

Figure 2 contains a graph of the number density of islands(〈n(θ)〉) as a function of
coverage for the RSA and ARSA of both monomers and dimers. This is simply related to
the average island size by〈L(θ)〉 = θ/〈n(θ)〉. In addition, the nearest-neighbour correlation
function is given by the differenceθ − 〈n(θ)〉 [24]. For a given coverage the number of
islands for the RSA process is greater than that for ARSA, a consequence of the more
efficient packing mechanism in ARSA.

5. Continuum deposition

In the RSA continuum problem on a line [4, 33], cars of length 1 are placed at randomly
chosen positions. If the position chosen is partially occupied then no deposition takes
place. Here we consider the accelerated version of this model; when a deposition attempt
is unsuccessful, the car diffuses along the line before parking in the first vacant space it
comes to that is large enough to take it. In this case the car parks so that it is touching the
last car it drove past. This mechanism is illustrated in figure 3. The kinetic equation for
the gap size distributionc(x, t) of this accelerated random car parking problemis

∂c(x, t)

∂t
= −(x − 1)c(x, t)+ 2

∫ ∞
x+1

c(y, t)dy + q(t)[c(x + 1, t)− c(x, t)] (26)

for x > 1 and

∂c(x, t)

∂t
= 2

∫ ∞
x+1

c(y, t)dy + q(t)c(x + 1, t) (27)

for 0< x < 1.
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Figure 3. The diffusion mechanism in the continuum ARSA model.

Equations (26) and (27) are similar to that for the accelerated Kolmogorov–Avrami–
Johnson–Mehl nucleation-and-growth process studied in [26]. These equations will give
the continuous part of the gap size probability distribution. The introduction of precursor
diffusion into this model results in a Diracδ-function at x = 0 in the gap distribution
associated with the cars that diffuse and are deposited in a position touching a neighbouring
car. The amplitude of thisδ-function can be calculated as a function ofθ but is not of any
particular interest. In the conventional RSA problem cars are never deposited touching one
another so in RSA a new gap is created at every successful deposition whereas in ARSA
this is not the case.

In equations (26) and (27),q(t) is the average length of chain in which it is not possible
to deposit a car of length 1,

q(t) = 1− ∫∞1 (y − 1)c(y, t)dy∫∞
1 c(y, t)dy

. (28)

These equations can be solved in a similar way to the lattice model, to revealθ(t) = t ,
c(x, t) = t2[2 exp{−G(t)} − 1] exp{−(x − 1)t} (29)

for x > 1 and

c(x, t) = 2
∫ t

0
u exp{−xu−G(u)} du (30)

for x < 1 where

G(t) =
∫ t

0

1− e−v

v
dv. (31)

The saturation coverage(θ(tc) = tc) is given by the conditionc(x, tc) = 0 for x > 1. Using
(28) givesG(tc) = ln 2 and hence thatθ(tc) = 0.8416. . .. As we mentioned in section 3,
this result can be obtained by taking the limitk →∞ after suitable rescaling of (21); the
integral term in (21) vanishes, whileFk(t)→ exp{G(t)}. It is also easy to show, by taking
the same limit under appropriate rescaling, that (29) and (30) follow from (18) and (20),
and that〈L〉/k (where〈L〉 is given by (22)) tends to

〈L〉 = t

2
∫ t

0 du e−G(u) − t (32)

which is equal to
t∫∞

0 dxc(x, t)
. (33)

This can be used to calculate the mean number of (touching) cars per island at saturation,
which we find to be 2.436. . . .
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Figure 4. The gap number distribution in the saturation limit for the continuum RSA and ARSA
model.

Using (30) one can show that the distribution of empty spaces at saturation is given by

c(x, tc) = 2
∫ tc

0
u exp{−xu−G(u)} du (34)

with tc determined byG(tc) = ln 2. This can be compared with the equivalent quantity for
RSA [4, 33]

c(x,∞) = 2
∫ ∞

0
u exp{−xu− 2G(u)} du. (35)

Figure 4 contains a graph of these two number distributions. Notice that asx → 0 the
distribution for RSA diverges logarithmically whereas that for ARSA tends to a constant
value. This difference arises from the difference in the late stage kinetics. When the
coverage is close to its saturation value, in RSA the kinetics comprise of the filling of gaps
which are of a size only just greater than 1. In ARSA these gaps are filled by the diffusion
mechanism which does not create small gaps at the same rate. It would be interesting to
see if different deposition rules could give other types of divergence inc(x, tc) asx → 0.

The number distributions (34) and (35), in figure 4, do not have the same normalization.
This is because they are normalized to the total number of empty spaces at saturation, which
is different in the two models. The curve for the ARSA model appears to be a straight
line when plotted with the standard RSA curve. It is in fact quite curved, although not as
profoundly as that for RSA.



3460 G J Rodgers and J A NFilipe

6. Summary and conclusions

We have derived exact results in one dimension for the ARSA model introduced in [24]
describing surface deposition with precursor-layer diffusion.

As time progresses, nucleation becomes less frequent and the precursor-mediated
deposition mechanism dominates (figure 1). During this process, the larger islands grow
and coalesce more rapidly and the precursor particles tend to migrate for longer and longer
distances, establishing correlations between sites further and further apart. These long-
range correlations generate a non-trivial distribution of island sizes, which was calculated
approximately in [24]. An exact calculation of the gap-size distribution is possible, however,
because the size of the inter-island gaps remains uncorrelated to the size of the adjacent
islands. As a result, statistical quantities describing the island pattern that only depend
on the island-gap interface, such as the island number density and average size, can be
calculated exactly. Perfect agreement was found with numerical simulations of the system.

An ARSA model withk-mer deposition on a line was introduced and analysed using
the same method. Here, in addition to the previous quantities, the saturation coverage
(table 1) was calculated as a function ofk. This study allowed an understanding of how
the size of the deposited particles affects the ARSA process. In the case of molecular
adsorption, the model mimics the geometric effects resulting from changing the size of the
molecules relative to the microscopic structure of the substrate. In the case of the population
dynamics model mentioned in the introduction, for example,k accounts for the minimum
amount of space and resources required by an individual to survive. The typical number of
molecules in a cluster, or of individuals in a population aggregate, is given by〈L(t)〉/k,
whose saturation value is given in table 2. While the average island size increases with
k, and accordingly the island number density decreases, the average number of touching
particles in a row decreases withk.

A continuum model for ARSA, anaccelerated random car parking problem, was also
introduced and solved. This describes the situation where there are no constraints on the
positions available in the empty regions of the substrate. As expected, all the results agree
with those fork-mer deposition on a lattice in the limitk→∞.

The results for ARSA were also compared with those for conventional RSA. Since the
precursor-diffusion mechanism is much more effective than direct deposition in filling up
the substrate, in ARSA there are a smaller number of islands for a given coverage than in
RSA (figure 2). Correspondingly, more closely packed saturation configurations are reached
in k-mer and continuous ARSA (table 1) than in their RSA counterparts. The saturation
limit of the gap-size distribution was shown to be more uniform for continuous ARSA than
for continuous RSA; in the latter case it diverges at the origin (figure 4). This is consistent
with the observation that in monomer ARSA the probabilities of growth and coalescence
tend to non-trivial values asθ → 1, whilePg → 0 andPc → 1 in monomer RSA (figure 1).
Conversely, the island-size distribution was found to peak at the origin in monomer ARSA,
while being more uniform in monomer RSA [24].

There are a number of possible extensions to this work. One of these is to consider the
deposition of a mixture of particles with different sizes. This corresponds to the situation
where different molecules, or species compete to occupy the space available. The model can
also be generalized by allowing only a fraction of the incident molecules, or offspring, to
be energetically capable of diffusing in the precursor layer. In this case the coverage grows
nonlinearly with time [24]. Another possibility is to allow deposited particles to diffuse
in the empty spaces. A one-dimensional problem like this, but without extrinsic precursor
diffusion, has recently been solved exactly [35]. The application of ARSA models, and
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related ones to studying epidemic spread is also being considered [32].
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